Calculates variance-covariance matrix from a species_mix object

# S3 method for species_mix
vcov(
  object,
  object2 = NULL,
  method = "BayesBoot",
  nboot = 10,
  mc.cores = 1,
  ...
)

Arguments

object

an object obtained from fitting a RCP (for region of common profile) mixture model. Such as that generated from a call to species_mix(qv).

object2

an object of class species_mix containing bootstrap samples of the parameter estimates (see species_mix_boot(qv)). If NULL (default) the bootstrapping is performed from within the vcov function. If not null, then the vcov estimate is obtained from these bootstrap samples.

method

the method to calculate the variance-covariance matrix. Options are:'FiniteDifference' (default), BayesBoot, SimpleBoot, and EmpiricalInfo. The two bootstrap methods (BayesBoot and SimpleBoot, see species_mix_boot(qv)) should be more general and may possibly be more robust. The EmpiricalInfo method implements an empirical estimate of the Fisher information matrix, I can not recommend it however. It seems to behave poorly, even in well behaved simulations. It is computationally thrifty though.

nboot

the number of bootstrap samples to take for the bootstrap estimation. Argument is ignored if !method %in% c(FiniteDifference,'EmpiricalInfo').

mc.cores

the number of cores to distribute the calculations on. Default is 4. Set to 1 if the computer is running Windows (as it cannot handle forking -- see mclapply(qv)). Ignored if method=='EmpiricalInfo'.

\dots

Ignored

Value

A square matrix of size equal to the number of parameters. It contains the variance matrix of the parameter estimates.

Details

If method is FiniteDifference, then the estimates variance matrix is based on a finite difference approximation to the observed information matrix. If method is either "BayesBoot" or "SimpleBoot", then the estimated variance matrix is calculated from bootstrap samples of the parameter estimates. See Foster et al (in prep) for details of how the bootstrapping is actually done, and species_mix_boot(qv) for its implementation.

Examples

# Estimate the variance-covariance matrix. # This will provide estimates of uncertainty for model parameters. # \donttest{ library(ecomix) set.seed(42) sam_form <- stats::as.formula(paste0('cbind(',paste(paste0('spp',1:20), collapse = ','),")~x1+x2")) sp_form <- ~ 1 beta <- matrix(c(-2.9,-3.6,-0.9,1,.9,1.9),3,2,byrow=TRUE) dat <- data.frame(y=rep(1,100),x1=stats::runif(100,0,2.5), x2=stats::rnorm(100,0,2.5)) dat[,-1] <- scale(dat[,-1]) simulated_data <- species_mix.simulate(archetype_formula = sam_form,species_formula = sp_form, data = dat,beta=beta,family="bernoulli")
#> Random alpha from normal (-1,0.5) distribution
fm1 <- species_mix(archetype_formula = sam_form,species_formula = sp_form, data = simulated_data, family = 'bernoulli', nArchetypes=3)
#> SAM modelling
#> There are 3 archetypes to group the species into
#> There are 100 site observations for 20 species
#> The model for the archetype (grouping) is ~x1 + x2
#> The model for the species is ~1
#> You are implementing a bernoulli Species Archetype Model.
#> Using ECM algorithm to find starting values; using 1 refits
#> ECM restart 1 of 1
#> Initialising starting values
#> Initial groups parameter estimates by K-means clustering
#> Iteration: 1 | New loglik -950.729 | Ratio loglik 0
#> Iteration: 2 | New loglik -829.843 | Ratio loglik 0.872849
#> Iteration: 3 | New loglik -820.246 | Ratio loglik 0.988434
#> Iteration: 4 | New loglik -819.839 | Ratio loglik 0.999504
#> initial value 819.837658 #> iter 10 value 819.706575 #> final value 819.703416 #> converged
vcov(fm1)# }
#> ..........
#> spp1 spp2 spp3 spp4 #> spp1 1.479054e-03 -0.0036288098 -2.238456e-05 1.706005e-03 #> spp2 -3.628810e-03 0.1290588302 -9.138796e-04 -3.216081e-03 #> spp3 -2.238456e-05 -0.0009138796 1.115070e-03 1.021110e-04 #> spp4 1.706005e-03 -0.0032160809 1.021110e-04 2.735869e-03 #> spp5 -2.008618e-03 0.0402145338 7.561347e-03 -2.416954e-03 #> spp6 -2.318914e-03 0.0977104066 -1.138946e-03 -1.735680e-03 #> spp7 -1.310811e-05 0.0045339497 3.157129e-04 2.837014e-04 #> spp8 1.368845e-03 -0.0069285176 4.870846e-05 2.444858e-03 #> spp9 8.044533e-05 0.0189223903 1.010740e-03 6.634078e-04 #> spp10 -3.778817e-05 0.0010637312 5.861215e-06 2.771258e-05 #> spp11 1.268586e-03 -0.0020535450 9.561731e-05 1.909232e-03 #> spp12 2.183028e-03 -0.0035539059 2.159930e-04 3.508742e-03 #> spp13 -2.279269e-03 0.0543518880 -2.172558e-03 -2.349510e-03 #> spp14 -1.083880e-03 0.0654240045 -1.237169e-03 -3.844096e-04 #> spp15 1.460730e-04 0.0022671201 4.831802e-06 4.952563e-04 #> spp16 7.559622e-04 -0.0012427896 4.837884e-05 1.206662e-03 #> spp17 -9.317876e-05 0.0055313466 -3.024852e-04 1.879483e-04 #> spp18 -7.120777e-04 0.0154856245 2.140288e-04 -6.123161e-04 #> spp19 1.871369e-03 -0.0035041040 1.148707e-04 2.999241e-03 #> spp20 8.454284e-04 -0.0024370413 -1.855341e-05 1.150212e-03 #> x1.Archetype1 -8.687603e-03 0.1662504098 1.844111e-03 -1.091633e-02 #> x1.Archetype2 3.678123e-03 -0.0057722698 4.509085e-04 5.953548e-03 #> x1.Archetype3 1.255422e-03 -0.0173297809 4.215040e-04 2.501608e-04 #> x2.Archetype1 -5.091656e-03 0.2909788633 -4.324444e-03 -2.212212e-03 #> x2.Archetype2 -3.910601e-03 0.0070469656 3.673486e-05 -6.184998e-03 #> x2.Archetype3 -9.239140e-04 -0.0127532339 -1.554752e-03 -1.767368e-03 #> eta1 4.624360e-05 0.0021605293 -1.396076e-03 -7.059815e-04 #> eta2 -5.582388e-04 -0.0114785258 5.561645e-04 -2.563862e-03 #> spp5 spp6 spp7 spp8 #> spp1 -0.0020086181 -0.0023189137 -1.310811e-05 1.368845e-03 #> spp2 0.0402145338 0.0977104066 4.533950e-03 -6.928518e-03 #> spp3 0.0075613474 -0.0011389460 3.157129e-04 4.870846e-05 #> spp4 -0.0024169544 -0.0017356799 2.837014e-04 2.444858e-03 #> spp5 0.0765586108 0.0270535064 2.866762e-03 -3.939390e-03 #> spp6 0.0270535064 0.0744343005 3.366347e-03 -4.561082e-03 #> spp7 0.0028667624 0.0033663471 4.018405e-04 1.072040e-04 #> spp8 -0.0039393896 -0.0045610823 1.072040e-04 2.620848e-03 #> spp9 0.0084576850 0.0140653052 1.599971e-03 -3.143385e-04 #> spp10 0.0001189736 0.0007990035 7.672605e-05 1.944246e-06 #> spp11 -0.0011664066 -0.0010636634 1.730777e-04 1.577957e-03 #> spp12 -0.0022743193 -0.0017907880 4.234193e-04 3.138032e-03 #> spp13 0.0022307587 0.0414865476 1.582161e-03 -3.960115e-03 #> spp14 0.0140997172 0.0502837655 2.231347e-03 -2.300978e-03 #> spp15 -0.0002185977 0.0019268955 2.369262e-04 3.559819e-04 #> spp16 -0.0009296109 -0.0006236818 1.256096e-04 1.079660e-03 #> spp17 -0.0001253665 0.0046924937 1.616905e-04 9.201543e-05 #> spp18 0.0075515767 0.0116156520 6.249017e-04 -8.332242e-04 #> spp19 -0.0026181554 -0.0018860500 3.130662e-04 2.680530e-03 #> spp20 -0.0014022883 -0.0015381057 8.632498e-06 1.019708e-03 #> x1.Archetype1 0.0779902337 0.1224944224 5.791216e-03 -1.510588e-02 #> x1.Archetype2 -0.0019035557 -0.0030044857 6.484705e-04 5.255015e-03 #> x1.Archetype3 0.0031986947 -0.0128761808 -1.160681e-03 4.720891e-04 #> x2.Archetype1 0.0727531953 0.2229924175 1.008287e-02 -1.090084e-02 #> x2.Archetype2 0.0085907172 0.0036020009 -6.621205e-04 -5.509228e-03 #> x2.Archetype3 -0.0149543176 -0.0097124239 -1.215135e-03 -9.424566e-04 #> eta1 -0.0069636644 0.0024600816 -6.489304e-04 -6.838493e-04 #> eta2 0.0060994988 -0.0091086370 -1.130863e-03 -2.185118e-03 #> spp9 spp10 spp11 spp12 #> spp1 8.044533e-05 -3.778817e-05 1.268586e-03 2.183028e-03 #> spp2 1.892239e-02 1.063731e-03 -2.053545e-03 -3.553906e-03 #> spp3 1.010740e-03 5.861215e-06 9.561731e-05 2.159930e-04 #> spp4 6.634078e-04 2.771258e-05 1.909232e-03 3.508742e-03 #> spp5 8.457685e-03 1.189736e-04 -1.166407e-03 -2.274319e-03 #> spp6 1.406531e-02 7.990035e-04 -1.063663e-03 -1.790788e-03 #> spp7 1.599971e-03 7.672605e-05 1.730777e-04 4.234193e-04 #> spp8 -3.143385e-04 1.944246e-06 1.577957e-03 3.138032e-03 #> spp9 9.463397e-03 3.282355e-04 4.979592e-04 1.103085e-03 #> spp10 3.282355e-04 2.335887e-05 7.221910e-06 2.802847e-05 #> spp11 4.979592e-04 7.221910e-06 1.408107e-03 2.447036e-03 #> spp12 1.103085e-03 2.802847e-05 2.447036e-03 4.633885e-03 #> spp13 6.916422e-03 4.679101e-04 -1.579421e-03 -2.456747e-03 #> spp14 9.299077e-03 5.453371e-04 -1.945017e-04 -1.934153e-04 #> spp15 1.320439e-03 4.025029e-05 3.647373e-04 7.219768e-04 #> spp16 3.391420e-04 1.205152e-05 8.447895e-04 1.542437e-03 #> spp17 1.326156e-03 -1.995004e-05 1.792345e-04 5.033828e-04 #> spp18 2.245943e-03 8.817383e-05 -5.169915e-04 -5.751979e-04 #> spp19 7.362725e-04 2.982925e-05 2.092759e-03 3.853147e-03 #> spp20 -2.258820e-04 -1.673093e-05 8.203609e-04 1.467446e-03 #> x1.Archetype1 2.529084e-02 1.285485e-03 -7.371688e-03 -1.339409e-02 #> x1.Archetype2 -6.647563e-05 2.328880e-05 4.121578e-03 7.687343e-03 #> x1.Archetype3 -5.638797e-03 -4.884334e-04 4.626352e-04 8.188458e-04 #> x2.Archetype1 4.118547e-02 2.380148e-03 -1.100020e-03 -1.438256e-03 #> x2.Archetype2 -3.121064e-03 -1.063455e-04 -4.347545e-03 -7.909826e-03 #> x2.Archetype3 -4.257967e-03 -5.062838e-05 -1.319246e-03 -2.935075e-03 #> eta1 -2.520578e-04 -1.563721e-04 -3.186135e-04 -7.839209e-04 #> eta2 -2.161156e-03 -4.357832e-04 -1.427461e-03 -2.880883e-03 #> spp13 spp14 spp15 spp16 #> spp1 -0.0022792695 -1.083880e-03 1.460730e-04 7.559622e-04 #> spp2 0.0543518880 6.542400e-02 2.267120e-03 -1.242790e-03 #> spp3 -0.0021725580 -1.237169e-03 4.831802e-06 4.837884e-05 #> spp4 -0.0023495104 -3.844096e-04 4.952563e-04 1.206662e-03 #> spp5 0.0022307587 1.409972e-02 -2.185977e-04 -9.296109e-04 #> spp6 0.0414865476 5.028377e-02 1.926896e-03 -6.236818e-04 #> spp7 0.0015821610 2.231347e-03 2.369262e-04 1.256096e-04 #> spp8 -0.0039601154 -2.300978e-03 3.559819e-04 1.079660e-03 #> spp9 0.0069164218 9.299077e-03 1.320439e-03 3.391420e-04 #> spp10 0.0004679101 5.453371e-04 4.025029e-05 1.205152e-05 #> spp11 -0.0015794213 -1.945017e-04 3.647373e-04 8.447895e-04 #> spp12 -0.0024567472 -1.934153e-04 7.219768e-04 1.542437e-03 #> spp13 0.0309805779 2.838857e-02 1.212596e-03 -1.084900e-03 #> spp14 0.0283885715 3.444477e-02 1.496814e-03 -7.491137e-05 #> spp15 0.0012125955 1.496814e-03 4.240594e-04 2.247225e-04 #> spp16 -0.0010849002 -7.491137e-05 2.247225e-04 5.361388e-04 #> spp17 0.0030691952 3.493049e-03 7.629365e-04 1.122901e-04 #> spp18 0.0061107082 7.617722e-03 3.605643e-04 -2.480922e-04 #> spp19 -0.0025498565 -4.093810e-04 5.461708e-04 1.322542e-03 #> spp20 -0.0014443234 -6.953999e-04 1.057677e-04 5.055395e-04 #> x1.Archetype1 0.0657072821 7.840062e-02 1.217329e-03 -4.565646e-03 #> x1.Archetype2 -0.0044812872 -4.539968e-04 8.277271e-04 2.590298e-03 #> x1.Archetype3 -0.0079505513 -8.733228e-03 -4.303075e-04 1.056352e-04 #> x2.Archetype1 0.1245437402 1.520277e-01 6.384612e-03 -5.610314e-04 #> x2.Archetype2 0.0050429756 5.007622e-04 -1.383715e-03 -2.756114e-03 #> x2.Archetype3 -0.0038187057 -6.528625e-03 -1.039817e-03 -7.808706e-04 #> eta1 0.0020192692 2.165237e-03 4.681860e-04 -2.339102e-04 #> eta2 -0.0061848197 -7.081741e-03 -2.401725e-04 -1.053966e-03 #> spp17 spp18 spp19 spp20 #> spp1 -9.317876e-05 -7.120777e-04 1.871369e-03 8.454284e-04 #> spp2 5.531347e-03 1.548562e-02 -3.504104e-03 -2.437041e-03 #> spp3 -3.024852e-04 2.140288e-04 1.148707e-04 -1.855341e-05 #> spp4 1.879483e-04 -6.123161e-04 2.999241e-03 1.150212e-03 #> spp5 -1.253665e-04 7.551577e-03 -2.618155e-03 -1.402288e-03 #> spp6 4.692494e-03 1.161565e-02 -1.886050e-03 -1.538106e-03 #> spp7 1.616905e-04 6.249017e-04 3.130662e-04 8.632498e-06 #> spp8 9.201543e-05 -8.332242e-04 2.680530e-03 1.019708e-03 #> spp9 1.326156e-03 2.245943e-03 7.362725e-04 -2.258820e-04 #> spp10 -1.995004e-05 8.817383e-05 2.982925e-05 -1.673093e-05 #> spp11 1.792345e-04 -5.169915e-04 2.092759e-03 8.203609e-04 #> spp12 5.033828e-04 -5.751979e-04 3.853147e-03 1.467446e-03 #> spp13 3.069195e-03 6.110708e-03 -2.549857e-03 -1.444323e-03 #> spp14 3.493049e-03 7.617722e-03 -4.093810e-04 -6.953999e-04 #> spp15 7.629365e-04 3.605643e-04 5.461708e-04 1.057677e-04 #> spp16 1.122901e-04 -2.480922e-04 1.322542e-03 5.055395e-04 #> spp17 2.536504e-03 1.505856e-03 2.175650e-04 -4.047001e-05 #> spp18 1.505856e-03 2.871135e-03 -6.617777e-04 -4.167357e-04 #> spp19 2.175650e-04 -6.617777e-04 3.288304e-03 1.261121e-03 #> spp20 -4.047001e-05 -4.167357e-04 1.261121e-03 5.424138e-04 #> x1.Archetype1 4.763017e-03 2.155656e-02 -1.194748e-02 -6.038813e-03 #> x1.Archetype2 2.328991e-04 -7.022292e-04 6.529809e-03 2.592364e-03 #> x1.Archetype3 1.426819e-03 -6.415330e-04 3.021381e-04 6.666651e-04 #> x2.Archetype1 1.504320e-02 3.426223e-02 -2.369429e-03 -3.273314e-03 #> x2.Archetype2 -6.702719e-04 1.784774e-03 -6.778942e-03 -2.518040e-03 #> x2.Archetype3 -2.276370e-03 -2.955094e-03 -1.968528e-03 -5.777809e-04 #> eta1 2.893906e-03 7.580128e-04 -7.668850e-04 -1.934875e-04 #> eta2 2.472024e-03 3.293092e-04 -2.789600e-03 -7.643254e-04 #> x1.Archetype1 x1.Archetype2 x1.Archetype3 x2.Archetype1 #> spp1 -0.0086876030 3.678123e-03 0.0012554222 -0.0050916558 #> spp2 0.1662504098 -5.772270e-03 -0.0173297809 0.2909788633 #> spp3 0.0018441112 4.509085e-04 0.0004215040 -0.0043244439 #> spp4 -0.0109163259 5.953548e-03 0.0002501608 -0.0022122119 #> spp5 0.0779902337 -1.903556e-03 0.0031986947 0.0727531953 #> spp6 0.1224944224 -3.004486e-03 -0.0128761808 0.2229924175 #> spp7 0.0057912161 6.484705e-04 -0.0011606808 0.0100828685 #> spp8 -0.0151058772 5.255015e-03 0.0004720891 -0.0109008437 #> spp9 0.0252908447 -6.647563e-05 -0.0056387969 0.0411854741 #> spp10 0.0012854847 2.328880e-05 -0.0004884334 0.0023801481 #> spp11 -0.0073716876 4.121578e-03 0.0004626352 -0.0011000205 #> spp12 -0.0133940912 7.687343e-03 0.0008188458 -0.0014382556 #> spp13 0.0657072821 -4.481287e-03 -0.0079505513 0.1245437402 #> spp14 0.0784006160 -4.539968e-04 -0.0087332278 0.1520277093 #> spp15 0.0012173287 8.277271e-04 -0.0004303075 0.0063846118 #> spp16 -0.0045656462 2.590298e-03 0.0001056352 -0.0005610314 #> spp17 0.0047630171 2.328991e-04 0.0014268188 0.0150432050 #> spp18 0.0215565556 -7.022292e-04 -0.0006415330 0.0342622295 #> spp19 -0.0119474759 6.529809e-03 0.0003021381 -0.0023694294 #> spp20 -0.0060388126 2.592364e-03 0.0006666651 -0.0032733144 #> x1.Archetype1 0.2430573867 -2.159108e-02 -0.0220294776 0.3534280576 #> x1.Archetype2 -0.0215910849 1.423751e-02 0.0019650064 -0.0023218414 #> x1.Archetype3 -0.0220294776 1.965006e-03 0.0118337103 -0.0373091273 #> x2.Archetype1 0.3534280576 -2.321841e-03 -0.0373091273 0.6727607769 #> x2.Archetype2 0.0251290191 -1.234308e-02 0.0008315698 0.0041349120 #> x2.Archetype3 -0.0148446981 -4.968032e-03 -0.0024345972 -0.0305305856 #> eta1 0.0003432089 -2.591263e-03 0.0031783043 0.0081527975 #> eta2 -0.0061863153 -5.954178e-03 0.0094891856 -0.0300459197 #> x2.Archetype2 x2.Archetype3 eta1 eta2 #> spp1 -3.910601e-03 -9.239140e-04 0.0000462436 -0.0005582388 #> spp2 7.046966e-03 -1.275323e-02 0.0021605293 -0.0114785258 #> spp3 3.673486e-05 -1.554752e-03 -0.0013960761 0.0005561645 #> spp4 -6.184998e-03 -1.767368e-03 -0.0007059815 -0.0025638619 #> spp5 8.590717e-03 -1.495432e-02 -0.0069636644 0.0060994988 #> spp6 3.602001e-03 -9.712424e-03 0.0024600816 -0.0091086370 #> spp7 -6.621205e-04 -1.215135e-03 -0.0006489304 -0.0011308635 #> spp8 -5.509228e-03 -9.424566e-04 -0.0006838493 -0.0021851178 #> spp9 -3.121064e-03 -4.257967e-03 -0.0002520578 -0.0021611559 #> spp10 -1.063455e-04 -5.062838e-05 -0.0001563721 -0.0004357832 #> spp11 -4.347545e-03 -1.319246e-03 -0.0003186135 -0.0014274612 #> spp12 -7.909826e-03 -2.935075e-03 -0.0007839209 -0.0028808832 #> spp13 5.042976e-03 -3.818706e-03 0.0020192692 -0.0061848197 #> spp14 5.007622e-04 -6.528625e-03 0.0021652371 -0.0070817411 #> spp15 -1.383715e-03 -1.039817e-03 0.0004681860 -0.0002401725 #> spp16 -2.756114e-03 -7.808706e-04 -0.0002339102 -0.0010539660 #> spp17 -6.702719e-04 -2.276370e-03 0.0028939057 0.0024720239 #> spp18 1.784774e-03 -2.955094e-03 0.0007580128 0.0003293092 #> spp19 -6.778942e-03 -1.968528e-03 -0.0007668850 -0.0027895996 #> spp20 -2.518040e-03 -5.777809e-04 -0.0001934875 -0.0007643254 #> x1.Archetype1 2.512902e-02 -1.484470e-02 0.0003432089 -0.0061863153 #> x1.Archetype2 -1.234308e-02 -4.968032e-03 -0.0025912630 -0.0059541776 #> x1.Archetype3 8.315698e-04 -2.434597e-03 0.0031783043 0.0094891856 #> x2.Archetype1 4.134912e-03 -3.053059e-02 0.0081527975 -0.0300459197 #> x2.Archetype2 1.498892e-02 3.197817e-03 0.0005792110 0.0056046715 #> x2.Archetype3 3.197817e-03 8.023681e-03 0.0003470483 -0.0008508639 #> eta1 5.792110e-04 3.470483e-04 0.0062765902 0.0060355288 #> eta2 5.604671e-03 -8.508639e-04 0.0060355288 0.0140332463