Predict species archetypes from a species_mix model. You can also predict the conditional species predictions using "prediction.type='species'".
# S3 method for species_mix predict( object, object2 = NULL, newdata = NULL, offset = NULL, nboot = 0, alpha = 0.95, mc.cores = 1, type = "response", prediction.type = "archetype", na.action = "na.pass", ... )
object | is a matrix model returned from the species_mix model. |
---|---|
object2 | is a species mix bootstrap object. |
newdata | a matrix of new observations for prediction. |
offset | an offset for prediction |
nboot | Number of bootstraps (or simulations if using IPPM) to run if no object2 is provided. |
alpha | confidence level. default is 0.95 |
mc.cores | number of cores to use in prediction. default is 1. |
type | Do you want to predict the 'response' or the 'link'; ala glm style predictions. |
prediction.type | Do you want to produce 'archetype' or 'species' level predictions. default is 'archetype'. |
na.action | The type of action to apply to NA data. Default is "na.pass" see predict.lm for more details. |
\dots | Ignored |
# \donttest{ library(ecomix) set.seed(42) sam_form <- stats::as.formula(paste0('cbind(',paste(paste0('spp',1:20), collapse = ','),")~x1+x2")) sp_form <- ~ 1 beta <- matrix(c(-2.9,-3.6,-0.9,1,.9,1.9),3,2,byrow=TRUE) dat <- data.frame(y=rep(1,100),x1=stats::runif(100,0,2.5), x2=stats::rnorm(100,0,2.5)) dat[,-1] <- scale(dat[,-1]) simulated_data <- species_mix.simulate(archetype_formula = sam_form,species_formula = sp_form, data = dat,beta=beta,family="bernoulli")#>fm1 <- species_mix(archetype_formula = sam_form,species_formula = sp_form, data = simulated_data, family = 'bernoulli', nArchetypes=3)#>#>#>#>#>#>#>#>#>#>#>#>#>#>#> initial value 819.837658 #> iter 10 value 819.706575 #> final value 819.703416 #> converged