R/regional_mix_s3-class.R
, R/species_mix_s3-class.R
effectPlotData.Rd
This function produces a list of data.frames for predicting the partial effect of a focal.predictor current included in a species_mix model.
# S3 method for regional_mix effectPlotData(focal.predictors, mod, ngrid = 50, ...) effectPlotData(focal.predictors, mod, ...) # S3 method for species_mix effectPlotData(focal.predictors, mod, ngrid = 50, ...)
focal.predictors | A character or string of characters which represent covariates in the model. |
---|---|
mod | The fitted species_mix model. |
ngrid | The length of the prediction vector. |
... | other arguments |
This function should return a list of data.frames one for each focal.predictor. This will enable user to predict marginal effects or plot the partial response plots.
Generate data for plotting or predicting partial effects of covariates
This function produces a list of data.frames for predicting the partial effect of a focal.predictor current included in a species_mix model.
# \donttest{ library(ecomix) set.seed(42) sam_form <- stats::as.formula(paste0('cbind(',paste(paste0('spp',1:20), collapse = ','),")~x1+x2")) sp_form <- ~ 1 beta <- matrix(c(-2.9,-3.6,-0.9,1,.9,1.9),3,2,byrow=TRUE) dat <- data.frame(y=rep(1,100),x1=stats::runif(100,0,2.5), x2=stats::rnorm(100,0,2.5)) dat[,-1] <- scale(dat[,-1]) simulated_data <- species_mix.simulate(archetype_formula = sam_form,species_formula = sp_form, data = dat,beta=beta,family="bernoulli")#>fm1 <- species_mix(archetype_formula = sam_form,species_formula = sp_form, data = simulated_data, family = 'bernoulli', nArchetypes=3)#>#>#>#>#>#>#>#>#>#>#>#>#>#>#> initial value 819.837658 #> iter 10 value 819.706575 #> final value 819.703416 #> convergedeffectPlotData("x1",fm1)#> $x1 #> x1 x2 #> 1 -1.73619885 3.295975e-17 #> 2 -1.66937720 3.295975e-17 #> 3 -1.60255555 3.295975e-17 #> 4 -1.53573391 3.295975e-17 #> 5 -1.46891226 3.295975e-17 #> 6 -1.40209062 3.295975e-17 #> 7 -1.33526897 3.295975e-17 #> 8 -1.26844733 3.295975e-17 #> 9 -1.20162568 3.295975e-17 #> 10 -1.13480403 3.295975e-17 #> 11 -1.06798239 3.295975e-17 #> 12 -1.00116074 3.295975e-17 #> 13 -0.93433910 3.295975e-17 #> 14 -0.86751745 3.295975e-17 #> 15 -0.80069581 3.295975e-17 #> 16 -0.73387416 3.295975e-17 #> 17 -0.66705252 3.295975e-17 #> 18 -0.60023087 3.295975e-17 #> 19 -0.53340922 3.295975e-17 #> 20 -0.46658758 3.295975e-17 #> 21 -0.39976593 3.295975e-17 #> 22 -0.33294429 3.295975e-17 #> 23 -0.26612264 3.295975e-17 #> 24 -0.19930100 3.295975e-17 #> 25 -0.13247935 3.295975e-17 #> 26 -0.06565771 3.295975e-17 #> 27 0.00116394 3.295975e-17 #> 28 0.06798559 3.295975e-17 #> 29 0.13480723 3.295975e-17 #> 30 0.20162888 3.295975e-17 #> 31 0.26845052 3.295975e-17 #> 32 0.33527217 3.295975e-17 #> 33 0.40209381 3.295975e-17 #> 34 0.46891546 3.295975e-17 #> 35 0.53573711 3.295975e-17 #> 36 0.60255875 3.295975e-17 #> 37 0.66938040 3.295975e-17 #> 38 0.73620204 3.295975e-17 #> 39 0.80302369 3.295975e-17 #> 40 0.86984533 3.295975e-17 #> 41 0.93666698 3.295975e-17 #> 42 1.00348862 3.295975e-17 #> 43 1.07031027 3.295975e-17 #> 44 1.13713192 3.295975e-17 #> 45 1.20395356 3.295975e-17 #> 46 1.27077521 3.295975e-17 #> 47 1.33759685 3.295975e-17 #> 48 1.40441850 3.295975e-17 #> 49 1.47124014 3.295975e-17 #> 50 1.53806179 3.295975e-17 #> #> attr(,"class") #> [1] "species_mix_effectPlotData"# }